Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.826
Filtrar
1.
Exp Hematol Oncol ; 13(1): 48, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725070

RESUMEN

BACKGROUND: Cancer is the leading cause of death among older adults. Although the integration of immunotherapy has revolutionized the therapeutic landscape of cancer, the complex interactions between age and immunotherapy efficacy remain incompletely defined. Here, we aimed to elucidate the relationship between aging and immunotherapy resistance. METHODS: Flow cytometry was performed to evaluate the infiltration of immune cells in the tumor microenvironment (TME). In vivo T cell proliferation, cytotoxicity and migration assays were performed to evaluate the antitumor capacity of tumor antigen-specific CD8+ T cells in mice. Real-time quantitative PCR (qPCR) was used to investigate the expression of IFN-γ-associated gene and natural killer (NK)-associated chemokine. Adoptive NK cell transfer was adopted to evaluate the effects of NK cells from young mice in overcoming the immunotherapy resistance of aged mice. RESULTS: We found that elderly patients with advanced non-small cell lung cancer (aNSCLC) aged ≥ 75 years exhibited poorer progression-free survival (PFS), overall survival (OS) and a lower clinical response rate after immunotherapy. Mechanistically, we showed that the infiltration of NK cells was significantly reduced in aged mice compared to younger mice. Furthermore, the aged NK cells could also suppress the activation of tumor antigen-specific CD8+ T cells by inhibiting the recruitment and activation of CD103+ dendritic cells (DCs). Adoptive transfer of NK cells from young mice to aged mice promoted TME remodeling, and reversed immunotherapy resistance. CONCLUSION: Our findings revealed the decreased sensitivity of elderly patients to immunotherapy, as well as in aged mice. This may be attributed to the reduction of NK cells in aged mice, which inhibits CD103+ DCs recruitment and its CD86 expression and ultimately leads to immunotherapy resistance.

2.
Gut Microbes ; 16(1): 2351620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38738766

RESUMEN

Gut microbiota plays an essential role in nonalcoholic fatty liver disease (NAFLD). However, the contribution of individual bacterial strains and their metabolites to childhood NAFLD pathogenesis remains poorly understood. Herein, the critical bacteria in children with obesity accompanied by NAFLD were identified by microbiome analysis. Bacteria abundant in the NAFLD group were systematically assessed for their lipogenic effects. The underlying mechanisms and microbial-derived metabolites in NAFLD pathogenesis were investigated using multi-omics and LC-MS/MS analysis. The roles of the crucial metabolite in NAFLD were validated in vitro and in vivo as well as in an additional cohort. The results showed that Enterococcus spp. was enriched in children with obesity and NAFLD. The patient-derived Enterococcus faecium B6 (E. faecium B6) significantly contributed to NAFLD symptoms in mice. E. faecium B6 produced a crucial bioactive metabolite, tyramine, which probably activated PPAR-γ, leading to lipid accumulation, inflammation, and fibrosis in the liver. Moreover, these findings were successfully validated in an additional cohort. This pioneering study elucidated the important functions of cultivated E. faecium B6 and its bioactive metabolite (tyramine) in exacerbating NAFLD. These findings advance the comprehensive understanding of NAFLD pathogenesis and provide new insights for the development of microbe/metabolite-based therapeutic strategies.


Asunto(s)
Enterococcus faecium , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Tiramina , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Humanos , Enterococcus faecium/metabolismo , Ratones , Niño , Tiramina/metabolismo , Masculino , Femenino , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/microbiología , Obesidad Infantil/microbiología , Obesidad Infantil/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
3.
Cell Death Differ ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719928

RESUMEN

Neuronal ferroptosis plays a key role in neurologic deficits post intracerebral hemorrhage (ICH). However, the endogenous regulation of rescuing ferroptotic neurons is largely unexplored. Here, we analyzed the integrated alteration of metabolomic landscape after ICH using LC-MS and MALDI-TOF/TOF MS, and demonstrated that aconitate decarboxylase 1 (Irg1) and its product itaconate, a derivative of the tricarboxylic acid cycle, were protectively upregulated. Deficiency of Irg1 or depletion of neuronal Irg1 in striatal neurons was shown to exaggerate neuronal loss and behavioral dysfunction in an ICH mouse model using transgenic mice. Administration of 4-Octyl itaconate (4-OI), a cell-permeable itaconate derivative, and neuronal Irg1 overexpression protected neurons in vivo. In addition, itaconate inhibited ferroptosis in cortical neurons derived from mouse and human induced pluripotent stem cells in vitro. Mechanistically, we demonstrated that itaconate alkylated glutathione peroxidase 4 (GPx4) on its cysteine 66 and the modification allosterically enhanced GPx4's enzymatic activity by using a bioorthogonal probe, itaconate-alkyne (ITalk), and a GPx4 activity assay using phosphatidylcholine hydroperoxide. Altogether, our research suggested that Irg1/itaconate-GPx4 axis may be a future therapeutic strategy for protecting neurons from ferroptosis post ICH.

4.
Platelets ; 35(1): 2347331, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38722091

RESUMEN

Platelet-rich plasma (PRP) holds promise as a therapeutic modality for wound healing; however, immediate utilization encounters challenges related to volume, concentration, and consistency. Cryopreservation emerges as a viable solution, preserving PRP's bioactive components and extending its shelf life. This study explores the practicality and efficacy of cryopreserved platelet-rich plasma (cPRP) in wound healing, scrutinizing both cellular mechanisms and clinical implications. Fresh PRP and cPRP post freeze-thaw underwent assessment in macrophage, fibroblast, and endothelial cell cultures. The impact of cPRP on active component release and cell behavior pertinent to wound healing was evaluated. Varied concentrations of cPRP (1%, 5%, 10%) were examined for their influence on cell polarization, migration, and proliferation. The results showed minimal changes in cPRP's IL-1ß levels, a slight decrease in PDGF-BB, and superior effects on macrophage M2 polarization and fibroblast migration, while no statistical significance was observed in endothelial cell angiogenesis and proliferation. Remarkably, 5% PRP exhibited the most significant stimulation among all cPRP concentrations, notably impacting cell proliferation, angiogenesis, and migration. The discussion underscores that cPRP maintains platelet phenotype and function over extended periods, with 5% cPRP offering the most favorable outcomes, providing a pragmatic approach for cold storage to extend post-thaw viability and amplify therapeutic effects.


What is the context? Platelet-rich plasma (PRP) is a potential bioactive material for wound healing, but using it immediately faces issues like volume, concentration, and consistency.Low-temperature freezing is a method employed to preserve PRP. However, the current understanding of the effects of the freezing-thawing process on the components of PRP and its impact on cells relevant to wound healing remains unclear.What is new? This study explores the feasibility and effectiveness of using cryopreserved PRP at −80°C for promoting wound healing. This research stands out for its focus on cellular responses and practical implications in therapeutic contexts.To understand their distinct impact on different cell types relevant to wound healing, the study meticulously examined various final concentrations of cPRP (1%, 5%, 10%).The study identified the superior effects of 5% cPRP on crucial cellular activities, notably in cell polarization, proliferation, angiogenesis, and migration.What is the impact? Low-temperature freezing can be considered an effective method for PRP preservation.Some bioactive components in cPRP exhibit subtle changes; however, these changes result in better effects on certain cell types related to healing.The study illustrates that all concentrations of cPRP effectively enhance cell proliferation, migration, and differentiation, emphasizing the comparable efficacy of cryopreserved PRP to non-cryopreserved PRP.


Asunto(s)
Criopreservación , Plasma Rico en Plaquetas , Cicatrización de Heridas , Plasma Rico en Plaquetas/metabolismo , Humanos , Criopreservación/métodos , Proliferación Celular , Movimiento Celular , Fibroblastos/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38722720

RESUMEN

Exemplar-based colorization aims to generate plausible colors for a grayscale image with the guidance of a color reference image. The main challenging problem is finding the correct semantic correspondence between the target image and the reference image. However, the colors of the object and background are often confused in the existing methods. Besides, these methods usually use simple encoder-decoder architectures or pyramid structures to extract features and lack appropriate fusion mechanisms, which results in the loss of high-frequency information or high complexity. To address these problems, this paper proposes a lightweight semantic attention-guided Laplacian pyramid network (SAGLP-Net) for deep exemplar-based colorization, exploiting the inherent multi-scale properties of color representations. They are exploited through a Laplacian pyramid, and semantic information is introduced as high-level guidance to align the object and background information. Specially, a semantic guided non-local attention fusion module is designed to exploit the long-range dependency and fuse the local and global features. Moreover, a Laplacian pyramid fusion module based on criss-cross attention is proposed to fuse high frequency components in the large-scale domain. An unsupervised multi-scale multi-loss training strategy is further introduced for network training, which combines pixel loss, color histogram loss, total variance regularisation, and adversarial loss. Experimental results demonstrate that our colorization method achieves better subjective and objective performance with lower complexity than the state-of-the-art methods.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38705722

RESUMEN

Epidermal melanin unit integrity is crucial for skin homeostasis and pigmentation. Epidermal growth factor (EGF) receptor (EGFR) is a pivotal player in cell growth, wound healing, and maintaining skin homeostasis. However, its influence on skin pigmentation is relatively unexplored. This study investigates the impact and underlying mechanisms of EGFR inhibitors on skin pigmentation. We evaluated EGF and EGFR expression in various skin cells using quantitative real-time PCR, Western blot, and immunofluorescence. EGF and EGFR were predominantly expressed in epidermal keratinocytes, and treatment with the EGFR tyrosine kinase inhibitors (EGFR-TKIs) gefitinib and PD153035 significantly increased stem cell factor (SCF) and endothelin-1 (ET-1) expression in cultured keratinocytes. Enhanced melanocyte migration and proliferation were observed in co-culture, as evidenced by time-lapse live imaging and single-cell tracking assays. Furthermore, topical application of gefitinib to guinea pig dorsal skin induced increased pigmentation and demonstrated efficacy in mitigating rhododendrol-induced leukoderma. Suppression of EGF signaling indirectly enhanced skin pigmentation by upregulating SCF and ET-1 in epidermal keratinocytes. This novel mechanism highlights the pivotal role of EGF signaling in regulating skin pigmentation, and topical EGFR-TKI therapy at an appropriate dose may be a promising approach for depigmentation disorder management.

7.
Mol Neurobiol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709392

RESUMEN

The objective of the study is to determine the causal relationship and potential mechanisms between Parkinson's disease (PD) and neuroinflammatory and neurotoxic mediators. We conducted two-sample Mendelian randomization (2SMR) study and multivariable Mendelian randomization (MVMR) analysis to investigate the causality between PD and neuroinflammatory and neurotoxic mediators. The mediation analysis with MR was also conducted to determine the potential mediating effect of neuroinflammatory and neurotoxic mediators between asthma and PD. Genetically predicted levels of nine neuroinflammation were associated with changes in PD risk. The associations of PD with CCL24, galectin-3 levels, haptoglobin, and Holo-Transcobalamin-2 remained significant in multivariable analyses. The mediation analysis with MR revealed that asthma affects PD through CCL24 and galectin-3. The results showed neuroinflammation could affect the pathogenesis of PD. In the combined analysis of these nine variables, CCL24, galectin-3 levels, HP, and Holo-Transcobalamin-2 alone were found to be significant. Asthma plays an intermediary role through CCL24 and galectin-3 levels.

8.
J Hazard Mater ; 472: 134468, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703680

RESUMEN

The performance of biochar (BC) in reducing the transport of antibiotics under field conditions has not been sufficiently explored. In repacked sloping boxes of a calcareous soil, the effects of different BC treatments on the discharge of three relatively weakly sorbing antibiotics (sulfadiazine, sulfamethazine, and florfenicol) via runoff and drainage were monitored for three natural rain events. Surface application of 1 % BC (1 %BC-SA) led to the most effective reduction in runoff discharge of the two sulfonamide antibiotics, which can be partly ascribed to the enhanced water infiltration. The construction of 5 % BC amended permeable reactive wall (5 %BC-PRW) at the lower end of soil box was more effective than the 1 %BC-SA treatment in reducing the leaching of the most weakly sorbing antibiotic (florfenicol), which can be mainly ascribed to the much higher plant available and drainable water contents in the 5 %BC-PRW soil than in the unamended soil. The results of this study highlight the importance of BC's ability to regulate flow pattern by modifying soil hydraulic properties, which can make a significant contribution to the achieved reduction in the transport of antibiotics offsite or to groundwater.

9.
Anal Chim Acta ; 1306: 342586, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692787

RESUMEN

BACKGROUND: Early prostatic cancer (PCa) diagnosis significantly improves the chances of successful treatment and enhances patient survival rates. Traditional enzyme cascade-based early cancer detection methods offer efficiency and signal amplification but are limited by cost, complexity, and enzyme dependency, affecting stability and practicality. Meanwhile, sarcosine (Sar) is commonly considered a biomarker for PCa development. It is essential to develop a Sar detection method based on cascade reactions, which should be efficient, low skill requirement, and suitable for on-site testing. RESULTS: To address this, our study introduces the synthesis of organic-inorganic self-assembled nanoflowers to optimize existing detection methods. The Sar oxidase (SOX)-inorganic hybrid nanoflowers (Cu3(PO4)2:Ce@SOX) possess inherent fluorescent properties and excellent peroxidase activity, coupled with efficient enzyme loading. Based on this, we have developed a dual-mode multi-enzyme cascade nanoplatform combining fluorescence and colorimetric methods for the detection of Sar. The encapsulation yield of Cu3(PO4)2:Ce@SOX reaches 84.5 %, exhibiting a remarkable enhancement in catalytic activity by 1.26-1.29 fold compared to free SOX. The present study employing a dual-signal mechanism encompasses 'turn-off' fluorescence signals ranging from 0.5 µM to 60 µM, with a detection limit of 0.226 µM, and 'turn-on' colorimetric signals ranging from 0.18 µM to 60 µM, with a detection limit of 0.120 µM. SIGNIFICANCE: Furthermore, our study developed an intelligent smartphone sensor system utilizing cotton swabs for real-time analysis of Sar without additional instruments. The nano-platform exhibits exceptional repeatability and stability, rendering it well-suited for detecting Sar in authentic human urine samples. This innovation allows for immediate analysis, offering valuable insights for portable and efficient biosensors applicable to Sar and other analytes.


Asunto(s)
Colorimetría , Oxidación-Reducción , Sarcosina , Teléfono Inteligente , Sarcosina/orina , Sarcosina/análisis , Sarcosina/química , Humanos , Nanoestructuras/química , Límite de Detección , Espectrometría de Fluorescencia , Neoplasias de la Próstata/diagnóstico , Fluorescencia , Técnicas Biosensibles , Sarcosina-Oxidasa/química
10.
Int Immunopharmacol ; 134: 112234, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38739976

RESUMEN

Ulcerative colitis, a chronic inflammatory condition affecting the rectum and colon to varying degrees, is linked to a dysregulated immune response and the microbiota. Sodium (aS,9R)-3-hydroxy-16,17-dimethoxy-15-oxidotricyclo[12.3.1.12,6]nonadeca-1(18),2,4,6(19),14,16-hexene-9-yl sulfate hydrate (SDH) emerges as a novel diarylheptane compound aimed at treating inflammatory bowel diseases. However, the mechanisms by which SDH modulates these conditions remain largely unknown. In this study, we assessed SDH's impact on the clinical progression of dextran sodium sulfate (DSS)-induced ulcerative colitis. Our results demonstrated that SDH significantly mitigated the symptoms of DSS-induced colitis, reflected in reduced disease activity index scores, alleviation of weight loss, shortening of the colorectum, and reduction in spleen swelling. Notably, SDH decreased the proportion of Th1/Th2/Th17 cells and normalized inflammatory cytokine levels in the colon. Furthermore, SDH treatment modified the gut microbial composition in mice with colitis, notably decreasing Bacteroidetes and Proteobacteria populations while substantially increasing Firmicutes, Actinobacteria, and Patescibacteria. In conclusion, our findings suggest that SDH may protect the colon from DSS-induced colitis through the regulation of Th1/Th2/Th17 cells and gut microbiota, offering novel insights into SDH's therapeutic potential.

11.
Asia Pac J Oncol Nurs ; 11(5): 100443, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38665637

RESUMEN

Objective: We assessed financial toxicity (FT) among Chinese patients with cancer and investigated associated risk factors guided by a multilevel conceptual framework. Methods: Applying multistage stratified sampling, we selected six tertiary and six secondary hospitals across three economically diverse provinces in China. From February to October 2022, 1208 patients with cancer participated. FT was measured using the COmprehensive Score for financial Toxicity (COST), with 28 potential risk factors identified at multilevel. Multiple regression analysis was used for risk factor identification. Results: FT prevalence was 82.6% (95% confidence interval [CI]: 80.5%, 84.8%), with high FT (COST score ≤ 18.5) observed in 40.9% of participants (95% CI: 38.1%, 43.7%). Significant risk factors included younger age at cancer diagnosis, unmarried status, low annual household income, negative impact of cancer on participants' or family caregiver's work, advanced cancer stage, longer hospital stay for cancer treatment or treatment-related side effects, high perceived stress, poor emotional/informational support, lack of social medical insurance or having urban and rural resident basic medical insurance, lack of commercial medical insurance, tertiary hospital treatment, and inadequate cost discussions with healthcare providers (all P < 0.05). Conclusions: Cancer-related FT is prevalent in China, contributing to disparities in cancer care access and health-related outcomes. The risk factors associated with cancer-related FT encompasses multilevel, including patient/family, provider/practice, and payer/policy levels. There is an urgent need for collective efforts by patients, healthcare providers, policymakers, and insurers to safeguard the financial security and well-being of individuals affected by cancer, promoting health equities in the realm of cancer care.

12.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611752

RESUMEN

Waterborne acrylic coatings, the largest market share of predominant environmentally friendly coatings, face limitations in their extensive application due to their flammability. The flame-retardant properties of the coatings could be significantly enhanced by incorporate inorganic flame retardants. However, inorganic flame retardants tend to aggregate and unevenly disperse in waterborne acrylic coatings, causing a substantial decrease in flame retardancy. In this work, sodium silicate was utilized as a flame retardant, with urea and melamine serving as modifiers and synergistic agents. This combination resulted in the preparation of a sodium silicate/urea/melamine ternary synergistic waterborne acrylic flame-retardant coating. This coating was applied to the surface of poplar veneer to create flame-retardant poplar veneer. Subsequently, various instruments, including a scanning electron microscope (SEM), a limiting oxygen index meter (LOI), a thermogravimetric analyzer (TG), and a cone calorimeter (CONE), were employed to investigate the relevant properties and mechanisms of both the flame-retardant coating and poplar veneer. The results demonstrated that the sodium silicate/urea/melamine ternary synergistic flame retardant did not exhibit aggregation and could be uniformly dispersed in waterborne acrylic coatings. The physical and mechanical properties of the ternary synergistic flame-retardant poplar veneer coating were satisfactory. Melamine and urea, acting as modifiers, not only greatly enhanced the dispersibility of sodium silicate in waterborne acrylic coatings, but also assisted in the formation of a silicon-containing char layer through the generation of nitrogen, achieving ternary synergistic flame retardancy. In conclusion, this work explores a novel method to efficiently and uniformly disperse inorganic flame retardants in organic coatings. It significantly improves the dispersibility and uniformity of inorganic flame retardants in organic polymers, thereby substantially enhancing the flame-retardant performance of coatings. This work provides a theoretical basis for the research and application of new flame-retardant coatings in the field of chemistry and materials.

13.
Light Sci Appl ; 13(1): 96, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664374

RESUMEN

Meningeal lymphatic vessels (mLVs) play a pivotal role in regulating metabolic waste from cerebrospinal fluid (CSF). However, the current limitations in field of view and resolution of existing imaging techniques impede understanding the stereoscopic morphology and dynamic behavior of mLVs in vivo. Here, we utilized dual-contrast functional photoacoustic microscopy to achieve wide-field intravital imaging of the lymphatic system, including mLVs and glymphatic pathways. The stereoscopic photoacoustic microscopy based on opto-acoustic confocal features has a depth imaging capability of 3.75 mm, facilitating differentiation between mLVs on the meninges and glymphatic pathways within the brain parenchyma. Subsequently, using this imaging technique, we were able to visualize the dynamic drainage of mLVs and identify a peak drainage period occurring around 20-40 min after injection, along with determining the flow direction from CSF to lymph nodes. Inspiringly, in the Alzheimer's disease (AD) mouse model, we observed that AD mice exhibit a ~ 70% reduction in drainage volume of mLVs compared to wild-type mice. With the development of AD, there is be continued decline in mLVs drainage volume. This finding clearly demonstrates that the AD mouse model has impaired CSF drainage. Our study opens up a horizon for understanding the brain's drainage mechanism and dissecting mLVs-associated neurological disorders.

14.
Orthop Surg ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658320

RESUMEN

OBJECTIVE: Bone marrow mesenchymal stem cells (BMSCs) show significant potential for osteogenic differentiation. However, the underlying mechanisms of osteogenic capability in osteoporosis-derived BMSCs (OP-BMSCs) remain unclear. This study aims to explore the impact of YTHDF3 (YTH N6-methyladenosine RNA binding protein 3) on the osteogenic traits of OP-BMSCs and identify potential therapeutic targets to boost their bone formation ability. METHODS: We examined microarray datasets (GSE35956 and GSE35958) from the Gene Expression Omnibus (GEO) to identify potential m6A regulators in osteoporosis (OP). Employing differential, protein interaction, and machine learning analyses, we pinpointed critical hub genes linked to OP. We further probed the relationship between these genes and OP using single-cell analysis, immune infiltration assessment, and Mendelian randomization. Our in vivo and in vitro experiments validated the expression and functionality of the key hub gene. RESULTS: Differential analysis revealed seven key hub genes related to OP, with YTHDF3 as a central player, supported by protein interaction analysis and machine learning methodologies. Subsequent single-cell, immune infiltration, and Mendelian randomization studies consistently validated YTHDF3's significant link to osteoporosis. YTHDF3 levels are significantly reduced in femoral head tissue from postmenopausal osteoporosis (PMOP) patients and femoral bone tissue from PMOP mice. Additionally, silencing YTHDF3 in OP-BMSCs substantially impedes their proliferation and differentiation. CONCLUSION: YTHDF3 may be implicated in the pathogenesis of OP by regulating the proliferation and osteogenic differentiation of OP-BMSCs.

15.
Materials (Basel) ; 17(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612062

RESUMEN

The effect of hydrogen content on the deformation and fracture behavior of 27Cr-4Mo-2Ni super ferritic stainless steel (SFSS) was investigated in this study. It was shown that the plasticity and yield strength of SFSS were very susceptible to hydrogen content. The introduction of hydrogen led to a significant decrease in elongation and a concurrent increase in yield strength. Nevertheless, a critical threshold was identified in the elongation reduction, after which the elongation remained approximately constant even with more hydrogen introduced, while the yield strength exhibited a monotonic increase with increasing hydrogen content within the experimental range, attributed to the pinning effect of the hydrogen Cottrell atmosphere on dislocations. Furthermore, the hydrogen-charged SFSS shows an apparent drop in flow stress after upper yielding and a reduced work hardening rate during the subsequent plastic deformation. The more hydrogen is charged, the more the flow stress drops, and the lower the work hardening rate becomes.

16.
J Aging Soc Policy ; : 1-19, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683965

RESUMEN

Systematic research has been conducted on the relationship between aging and consumer fraud victimization. But few empirical studies examine the reality of judicial dispute resolution in consumer fraud against older people from the perspective of older adults and judges in China. Based on 161 court rulings, this qualitative study explores the perceptions of older adults in litigation about their experiences of being defrauded in China, alongside judges' responses. Results reveal that common fraud patterns used by business perpetrators render older individuals more susceptible to fraud. Older plaintiffs strategically frame "old age" in litigation, potentially as a tactical maneuver, while also readily emphasizing the importance of procedural justice. Results further show that judges expressed either negative ageism or age-neutral discourse in response to fraud targeting older individuals. Findings highlight the need to enhance consumer education to prevent fraud and address ageist stereotypes among older people. Findings also highlight the need to encourage Chinese courts to consider individual case specifics, leading to fair judgments and the protection of older individuals from fraud while upholding their rights.

17.
Hortic Res ; 11(4): uhae029, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38585016

RESUMEN

ABSCISIC ACID-INSENSITIVE5 (ABI5) is a core regulatory factor that mediates the ABA signaling response and leaf senescence. However, the molecular mechanism underlying the synergistic regulation of leaf senescence by ABI5 with interacting partners and the homeostasis of ABI5 in the ABA signaling response remain to be further investigated. In this study, we found that the accelerated effect of MdABI5 on leaf senescence is partly dependent on MdbHLH93, an activator of leaf senescence in apple. MdABI5 directly interacted with MdbHLH93 and improved the transcriptional activation of the senescence-associated gene MdSAG18 by MdbHLH93. MdPUB23, a U-box E3 ubiquitin ligase, physically interacted with MdABI5 and delayed ABA-triggered leaf senescence. Genetic and biochemical analyses suggest that MdPUB23 inhibited MdABI5-promoted leaf premature senescence by targeting MdABI5 for ubiquitin-dependent degradation. In conclusion, our results verify that MdABI5 accelerates leaf senescence through the MdABI5-MdbHLH93-MdSAG18 regulatory module, and MdPUB23 is responsible for the dynamic regulation of ABA-triggered leaf senescence by modulating the homeostasis of MdABI5.

18.
PeerJ ; 12: e17105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563016

RESUMEN

Background: Colorectal cancer (CRC) is one of the most common cancers worldwide and is related to diet and obesity. Currently, crosstalk between lipid metabolism and CRC has been reported; however, the specific mechanism is not yet understood. In this study, we screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. According to the results of the biological analysis, we speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Methods: We screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. Results: We speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Conclusions: In this study, the findings raise the possibility of crosstalk between lipid metabolism and CRC through the exosomal delivery of lncRNAs.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Humanos , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , ARN Largo no Codificante/genética , Tejido Adiposo Blanco/metabolismo , Neoplasias Colorrectales/genética , ARN Mensajero/genética
19.
Science ; 384(6692): 233-239, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38603490

RESUMEN

Global estimates of the size, distribution, and vulnerability of soil inorganic carbon (SIC) remain largely unquantified. By compiling 223,593 field-based measurements and developing machine-learning models, we report that global soils store 2305 ± 636 (±1 SD) billion tonnes of carbon as SIC over the top 2-meter depth. Under future scenarios, soil acidification associated with nitrogen additions to terrestrial ecosystems will reduce global SIC (0.3 meters) up to 23 billion tonnes of carbon over the next 30 years, with India and China being the most affected. Our synthesis of present-day land-water carbon inventories and inland-water carbonate chemistry reveals that at least 1.13 ± 0.33 billion tonnes of inorganic carbon is lost to inland-waters through soils annually, resulting in large but overlooked impacts on atmospheric and hydrospheric carbon dynamics.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38688300

RESUMEN

Low-/negative-pressure hydrocephalus (LPH/NePH) is uncommon in clinical practice, and doctors are unfamiliar with it. LPH/NePH is frequently caused by other central nervous system diseases, and patients are frequently misdiagnosed with other types of hydrocephalus, resulting in delayed treatment. LPH/NePH therapy evolved to therapeutic measures based on "external ventricular drainage below atmospheric pressure" as the number of patients with LPH/NePH described in the literature has increased. However, the mechanism of LPH/NePH formation is unknown. Thus, understanding the process of LPH/NePH development is the most important step in improving diagnosis and treatment capability. Based on case reports of LPH/NePH, we reviewed theories of transcortical pressure difference, excessive cerebral venous drainage, brain viscoelastic changes, and porous elastic sponges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA